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Example 1 (Management Decision Tree Analysis)

A management decision tree is a branched flowchart showing multiple pathways for potential decisions and
outcomes.

Figure 1: An example of Management Decision Tree

• Suppose that a company is considering to develop a new product P. The product P includes two different
types. The company employ a marketing research institute to study that which type is better?

• Based on the study results, the marketing research institute report: (1) If they produce the first type
P1, then P1 has 0.3 chance for good sales with profit 170$ per unit; 0.5 chance for average sales with
profit 90$ per unit; 0.2 chance for poor sales with -6$ per unit.

• Based on the study results, the marketing research institute report: (1) If they produce the first type
P2, then P2 has 0.6 chance for good sales with profit 100$ per unit; 0.3 chance for average sales with
profit 50$ per unit; 0.1 chance for poor sales with 30$ per unit.

• Q: which one is better? P1 or P2?

• For determining P1 or P2, management decision tree analysis is a commonly used method (see Figure
1).

• The main idea is to calculate the so-called expected reward as follows:

I1 = 170× 0.3 + 90× 0.5− 6× 0.2 = 94.8,
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and
I2 = 100× 0.6 + 50× 0.3 + 20× 0.1 = 77.

• So, I1 > I2, we need to choice P1.

Example 1 is a signal step decision making problem. What about multiple step decision making problem?

Example 2 (Markov Decision Processing and Reinforcement Learning)
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Figure 2: Markov Decision Processing

The above multiple decision making problem (See Figure 2) can be formalized as a Markov Decision Processing
(MDP).

Figure 3: Trajectory of the Markov Decision Processing

• State Space S is considered as a finite state space with cardinally |S|.
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• Action Space A is considered as a finite action space with cardinally |A|.

• Transition Probability:
P(st+1|at, st, at−1, st−1, . . . , s0) = P(st+1|at, st). (1)

• Expected Reward:
E(rt|at, st, at−1, st−1, . . . , s0) = E(rt+1|at, st) = r(at, st). (2)

• Accumulated Reward:

R(τ) =

∞∑
t=0

γtr(at, st) (3)

where τ = (s0, a0, s1, a1, . . . , ) is a trajectory (see Figure 3) and 0 < γ < 1 is a discount factor.

• Policy π : s ∈
mathcalS → ∆(A) and a ∼ π(a|s).

• Aim: Finding an optimal policy for maximizing the expected accumulated reward.

Optimization Formulation:
max
π

Eτ∼π[R(τ)]. (4)

Reinforcement Learning is commonly used method to solve the above optimization.

Classification of Optimization:

• Linear and Nonlinear Optimization

• Convex and Nonconvex Optimization

• Deterministic and Stochastic Optimization

• Constrained and Non-constrained Optimization

• Integer Program, Mixed Integer Program

• Robust Optimization

• QCQP,...

0.1 Algorithms in Optimization

Let us consider an optimization problem

min
x

f(x), (5)

s.t. x ∈ X , (6)

where f : X ⊂ Rn → R, and further assume that x∗ is the optimal global point or solution for it which is
defined by Definition ??.

An optimization algorithm is to design for pursuing the x∗. However, usually it is not easy.

We consider the least squares problem in Example ??,

min
x
f(x) =

1

2
‖Ax− b‖22. (7)

Q: How to find x∗ for the least squares problem?

Generally, I believe that you should known that to compute the derivative to obtain f ′(x) and set f ′(x) = 0.
Then the solution of f ′(x) = 0 maybe the optimal solution of Eq.(7). What does it mean f ′(x) for a function
defined on Rn?
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Definition 1 A function f : Rn → R is Fŕechet-differential at x, if there exists a vector g ∈ Rn such that

lim
∆x→0

f(x + ∆x)− f(x)− g>∆x

‖∆x‖
= 0. (8)

Then g is called the gradient of f at x, denoted as g := ∇f(x). If we further choose that ∆x = εei, and
ei = (0, . . . , 1︸︷︷︸

ith position

, 0, . . . , 0)>, then

∇f(x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)>
∈ Rn.

Definition 2 We define the Hessian matrix of function f : Rn → R at point x is

∇2f(x) =

(
∂2f

∂xi∂xj

)
∈ Rn

2

=


∂2f
∂2x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
... . . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂2xn

 .

Commonly, we assume that the Hessian matrix ∇2f(x) is a symmetric matrix (actually need some regularity
conditions).

Definition 3 Let f : Rn → Rm, namely for any x ∈ Rn, f(x) = (f1(x), f2(x), . . . , fm(x))> ∈ Rm, the
Jacobi matrix is denoted as

J(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
... . . .

...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 ∈ Rm×n.

Q: prove that the Jacobi matrix of gradient is the corresponding Hessian matrix.

Example 3 f(x) = a>x, then ∇f(x) = a,∇2f(x) = 0 ∈ Rn2

, why???

Example 4 f(x) = 1
2‖Ax− b‖22.

Let us consider a general case, suppose that G : Rn → R and G(z) = g(z1)+g(z2)+ · · ·+g(zn) and zi = a>i x,
where z = (z1, . . . , zn)>. Let us derive that

∂G(Ax)

∂x
=
∂(g(a>1 x) + g(a>2 x) + · · ·+ g(a>nx))

∂x
(9)

=

n∑
i=1

∂g(a>i x)

∂x
=

n∑
i=1

∂g(a>i x)

∂a>i x
× ∂a>i x

∂x
(10)

=

n∑
i=1

∂g(a>i x)

∂a>i x
ai (11)

= A>∇G(z). (12)

Theorem 1 (First-order Optimality Condition) Consider a non-constrained optimization problem minx f(x),
where f : Rn → R and f ∈ C1. If x∗ is a local minimum, then

∇f(x∗) = 0.
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The points which satisfy the equation ∇f(x) = 0 are called stationary points.

Theorem 2 (Second-order Optimality Condition) Consider a non-constrained optimization problem minx f(x),
where f : Rn → R and f ∈ C2. If x∗ is a local minimum, then

∇f(x∗) = 0 and ∇2f(x∗) ≥ 0,

where ∇2f(x∗) ≥ 0 means the Hessian matrix is a positive semi-definite matrix.

Theorem 3 (Sufficient Condition) Consider a non-constrained optimization problem minx f(x), where f :
Rn → R and f ∈ C2. If

∇f(x∗) = 0 and ∇2f(x∗) > 0,

where ∇2f(x∗) > 0 means the Hessian matrix is a positive definite matrix. Then x∗ is a local minimum of
f .

These proofs can be found at Page 161-163 of the text book.

We go back to this example and further assume that G(z) = 1
2‖z− b‖2 = 1

2

∑n
i=1(zi − bi)2, zi = a>i x. Thus,

∇G(z) = (z1 − b1, . . . , zn − bn)>. Finally, based on Eq.(12),

∇f(x) =
∂G(z)

∂x
= A>(z− b)

= A>(Ab− b) = A>Ax−Ab

and
∇2f(x) = A>A.

Recall the least squares problem (7), and set ∇f(x) = ∇ 1
2‖Ax − b‖22 = 0, then we obtain the so-called

normal equation:
A>Ax−A>b = 0. (13)

If A>A is invertible, then x∗ = (A>A)−1A>b, which is called a closed form solution.

According to the definition of stationary point, we know that x∗ = (A>A)−1A>b is a stationary point of
the least squares problem. Furthermore, if ∇2f(x) = A>A is a positive definite matrix (invertible), then
x∗ = (A>A)−1A>b is a local minimum according to Theorem 3.

The procedure of obtaining the closed form solution can be seen as an algorithm for solving
the linear least squares problem.
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