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Example 1 (Management Decision Tree Analysis)

A management decision tree is a branched flowchart showing multiple pathways for potential decisions and
outcomes.
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Figure 1: An example of Management Decision Tree

Probability of Poor Sales: 0.1

e Suppose that a company is considering to develop a new product P. The product P includes two different
types. The company employ a marketing research institute to study that which type is better?

e Based on the study results, the marketing research institute report: (1) If they produce the first type
P1, then P1 has 0.3 chance for good sales with profit 1708 per unit; 0.5 chance for average sales with
profit 908 per unit; 0.2 chance for poor sales with -68 per unit.

e Based on the study results, the marketing research institute report: (1) If they produce the first type
P2, then P2 has 0.6 chance for good sales with profit 1008 per unit; 0.3 chance for average sales with
profit 508 per unit; 0.1 chance for poor sales with 30% per unit.

o Q: which one is better? P1 or P2?

o For determining P1 or P2, management decision tree analysis is a commonly used method (see Figure
1).

e The main idea is to calculate the so-called expected reward as follows:

I; =170 x 0.3 490 x 0.5 — 6 x 0.2 = 94.8,



and
I, =100 x 0.6 + 50 x 0.3 +20 x 0.1 = 77.

e So, I > Is, we need to choice P1.

Example 1 is a signal step decision making problem. What about multiple step decision making problem?

Example 2 (Markov Decision Processing and Reinforcement Learning)
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Figure 2: Markov Decision Processing
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The above multiple decision making problem (See Figure 2) can be formalized as a Markov Decision Processing
(MDP).
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Figure 3: Trajectory of the Markov Decision Processing

e State Space S is considered as a finite state space with cardinally |S|.



e Action Space A is considered as a finite action space with cardinally |A|.

e Transition Probability:
P(St+1|at7 Sty At—1ySt—15-- -5 50) = P(St+1‘at, 8t)~ (1)

e FExpected Reward:
E(r¢lat, sty at—1,8t-1,---,50) = E(rera]ag, s¢) = r(ag, st). (2)

o Accumulated Reward:

R(r) = ~'r(as, s1) (3)
t=0

where T = (Sg, ag, $1,a1, ..., ) is a trajectory (see Figure 3) and 0 <y <1 is a discount factor.

e Policym:s¢€
mathcalS — A(A) and a ~ 7 (als).

o Aim: Finding an optimal policy for maximizing the expected accumulated reward.

Optimization Formulation:

max E, - [R(7)]. (4)
Reinforcement Learning is commonly used method to solve the above optimization.

Classification of Optimization:

Linear and Nonlinear Optimization

Convex and Nonconvex Optimization

Deterministic and Stochastic Optimization

Constrained and Non-constrained Optimization

Integer Program, Mixed Integer Program

e Robust Optimization
QCQP....

0.1 Algorithms in Optimization

Let us consider an optimization problem
min f(x), (5)
st.xe X, (6)

where f : X C R® — R, and further assume that x* is the optimal global point or solution for it which is
defined by Definition ?7.

An optimization algorithm is to design for pursuing the x*. However, usually it is not easy.

We consider the least squares problem in Example 77,

min f(x) = 1| Ax - b 7

Q: How to find z* for the least squares problem?

Generally, I believe that you should known that to compute the derivative to obtain f’(x) and set f’(x) = 0.
Then the solution of f/(x) = 0 maybe the optimal solution of Eq.(7). What does it mean f’(x) for a function
defined on R"?



Definition 1 A function f : R™ — R is Frechet-differential at x, if there exists a vector g € R™ such that

. f(x+Ax) - f(x) —g'Ax B
A x| =0 ®)

Then g is called the gradient of f at x, denoted as g := Vf(x). If we further choose that Ax = ee;, and
e;=(0,..., 1 ,0,...,0)7, then

ith position

_(of of AN
Vf(x)—(axl,axz,...,axn) € R"”.

Definition 2 We define the Hessian matriz of function f: R™ — R at point x is

V2f(x) = ( 0 f ) e R

Bxiaxj
of *f _o’f
02z, Ox10xo Tt O0x10x,
o f o f o f
O0x, 021 Oxn,0xg 02z,

Commonly, we assume that the Hessian matriz V? f(x) is a symmetric matriz (actually need some regularity
conditions).

Definition 3 Let f : R® — R™, namely for any x € R*, f(x) = (f1(x), fa(x),..., fm(x))" € R™, the
Jacobi matriz is denoted as

ofr  Of1 of1
Oz Oz e Oxy,
Jx)=| : LT | eRT
Ofm  Ofm Ofm
oxq Oxo e Oy,

Q: prove that the Jacobi matrix of gradient is the corresponding Hessian matrix.
Example 3 f(x) =a'x, then Vf(x) =a,V2f(x) =0 c R"", why???
Example 4 f(x) = 1||Ax — b|3.

Let us consider a general case, suppose that G : R" — R and G(z) = g(z1) +g(z2)+---+g(zn) and z; = a] x,
where z = (z1,...,2,)". Let us derive that

0G(Ax)  9(g(alx)+g(agx) +--- +g(a, x))

ox ox (9)

B - 8g(a;rx) B ° 8g(az—»'—x) 8a;'—x
o ; ox ; Bajx x ox (10)

" dg(a x)

_ i %), 11
; ('9a;'—x a (11)
= ATVG(z). (12)

Theorem 1 (First-order Optimality Condition) Consider a non-constrained optimization problem miny f(x),
where f :R™ = R and f € C'. If x* is a local minimum, then

VF(x*) = 0.



The points which satisfy the equation V f(x) = 0 are called stationary points.

Theorem 2 (Second-order Optimality Condition) Consider a non-constrained optimization problem miny f(x),
where f:R™ = R and f € C%. If x* is a local minimum, then

VF(x*) =0 and V>f(x*) >0,

where V2 f(x*) > 0 means the Hessian matriz is a positive semi-definite matriz.

Theorem 3 (Sufficient Condition) Consider a non-constrained optimization problem miny f(x), where f :
R"” =R and f € C?. If
Vf(x*) =0 and V2f(x*) >0,

where V2 f(x*) > 0 means the Hessian matriz is a positive definite matriz. Then x* is a local minimum of
f-
These proofs can be found at Page 161-168 of the text book.

We go back to this example and further assume that G(z) = 3|z —b||? = 1 37 (2 — b;)?, z; = a; x. Thus,
VG(z) = (21 — b1, .., 2y — by) . Finally, based on Eq.(12),

and

Vif(x)=ATA.

Recall the least squares problem (7), and set Vf(x) = V3||Ax — b[|3 = 0, then we obtain the so-called

normal equation:
ATAx —ATb=0. (13)

If AT A is invertible, then x* = (AT A)"1ATb, which is called a closed form solution.

According to the definition of stationary point, we know that x* = (AT A)"'ATb is a stationary point of
the least squares problem. Furthermore, if V2f(x) = AT A is a positive definite matrix (invertible), then
x* = (ATA)"1ATb is a local minimum according to Theorem 3.

The procedure of obtaining the closed form solution can be seen as an algorithm for solving
the linear least squares problem.
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