Optimization Theory and Algorithm	Lecture 3 - 05/07/2021
Lect	ure 3
Lecturer:Xiangyu Chang	Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

Example 1 (Management Decision Tree Analysis)

A management decision tree is a branched flowchart showing multiple pathways for potential decisions and outcomes.

Figure 1: An example of Management Decision Tree

- Suppose that a company is considering to develop a new product P. The product P includes two different types. The company employ a marketing research institute to study that which type is better?
- Based on the study results, the marketing research institute report: (1) If they produce the first type P1, then P1 has 0.3 chance for good sales with profit 170\$ per unit; 0.5 chance for average sales with profit 90\$ per unit; 0.2 chance for poor sales with -6\$ per unit.
- Based on the study results, the marketing research institute report: (1) If they produce the first type P2, then P2 has 0.6 chance for good sales with profit 100\$ per unit; 0.3 chance for average sales with profit 50\$ per unit; 0.1 chance for poor sales with 30\$ per unit.
- Q: which one is better? P1 or P2?
- For determining P1 or P2, management decision tree analysis is a commonly used method (see Figure 1).
- The main idea is to calculate the so-called **expected reward** as follows:

 $I_1 = 170 \times 0.3 + 90 \times 0.5 - 6 \times 0.2 = 94.8,$

and

$$I_2 = 100 \times 0.6 + 50 \times 0.3 + 20 \times 0.1 = 77.$$

• So, $I_1 > I_2$, we need to choice P1.

Example 1 is a signal step decision making problem. What about multiple step decision making problem?Example 2 (Markov Decision Processing and Reinforcement Learning)

Figure 2: Markov Decision Processing

The above multiple decision making problem (See Figure 2) can be formalized as a Markov Decision Processing (MDP).

Figure 3: Trajectory of the Markov Decision Processing

[•] State Space S is considered as a finite state space with cardinally |S|.

- Action Space \mathcal{A} is considered as a finite action space with cardinally $|\mathcal{A}|$.
- Transition Probability:

$$\mathbb{P}(s_{t+1}|a_t, s_t, a_{t-1}, s_{t-1}, \dots, s_0) = \mathbb{P}(s_{t+1}|a_t, s_t).$$
(1)

• Expected Reward:

$$\mathbb{E}(r_t|a_t, s_t, a_{t-1}, s_{t-1}, \dots, s_0) = \mathbb{E}(r_{t+1}|a_t, s_t) = r(a_t, s_t).$$
(2)

• Accumulated Reward:

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r(a_t, s_t) \tag{3}$$

where $\tau = (s_0, a_0, s_1, a_1, \dots,)$ is a trajectory (see Figure 3) and $0 < \gamma < 1$ is a discount factor.

- Policy $\pi : s \in$ mathcal $S \to \Delta(\mathcal{A})$ and $a \sim \pi(a|s)$.
- Aim: Finding an optimal policy for maximizing the expected accumulated reward.

Optimization Formulation:

$$\max_{\tau} \mathbf{E}_{\tau \sim \pi}[R(\tau)]. \tag{4}$$

Reinforcement Learning is commonly used method to solve the above optimization.

Classification of Optimization:

- Linear and Nonlinear Optimization
- Convex and Nonconvex Optimization
- Deterministic and Stochastic Optimization
- Constrained and Non-constrained Optimization
- Integer Program, Mixed Integer Program
- Robust Optimization
- QCQP,...

0.1 Algorithms in Optimization

Let us consider an optimization problem

$$\min_{x} f(\mathbf{x}),\tag{5}$$

s.t.
$$\mathbf{x} \in \mathcal{X}$$
, (6)

where $f : \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$, and further assume that \mathbf{x}^* is the optimal global point or solution for it which is defined by Definition ??.

An optimization algorithm is to design for pursuing the \mathbf{x}^* . However, usually it is not easy.

We consider the least squares problem in Example ??,

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$
(7)

Q: How to find x^* for the least squares problem?

Generally, I believe that you should known that to compute the derivative to obtain $f'(\mathbf{x})$ and set $f'(\mathbf{x}) = 0$. Then the solution of $f'(\mathbf{x}) = 0$ maybe the optimal solution of Eq.(7). What does it mean $f'(\mathbf{x})$ for a function defined on \mathbb{R}^n ? **Definition 1** A function $f : \mathbb{R}^n \to \mathbb{R}$ is Fréchet-differential at \mathbf{x} , if there exists a vector $g \in \mathbb{R}^n$ such that

$$\lim_{\Delta \mathbf{x} \to 0} \frac{f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}) - g^{\top} \Delta \mathbf{x}}{\|\Delta \mathbf{x}\|} = 0.$$
 (8)

Then g is called the gradient of f at \mathbf{x} , denoted as $g := \nabla f(\mathbf{x})$. If we further choose that $\Delta \mathbf{x} = \epsilon e_i$, and $e_i = (0, \ldots, \underbrace{1}_{i^{th} \text{ position}}, 0, \ldots, 0)^{\top}$, then

 $(\partial f \partial f \partial f \partial f)^{\mathsf{T}}$

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^\top \in \mathbb{R}^n.$$

Definition 2 We define the Hessian matrix of function $f : \mathbb{R}^n \to \mathbb{R}$ at point **x** is

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right) \in \mathbb{R}^{n^2}$$
$$= \left(\begin{array}{ccc} \frac{\partial^2 f}{\partial^2 x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial^2 x_n} \end{array}\right).$$

Commonly, we assume that the Hessian matrix $\nabla^2 f(\mathbf{x})$ is a symmetric matrix (actually need some regularity conditions).

Definition 3 Let $f : \mathbb{R}^n \to \mathbb{R}^m$, namely for any $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))^\top \in \mathbb{R}^m$, the Jacobi matrix is denoted as

$$J(\mathbf{x}) = \begin{pmatrix} \frac{\partial J_1}{\partial x_1} & \frac{\partial J_1}{\partial x_2} & \cdots & \frac{\partial J_1}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{m \times n}.$$

Q: prove that the Jacobi matrix of gradient is the corresponding Hessian matrix.

Example 3 $f(\mathbf{x}) = \mathbf{a}^{\top}\mathbf{x}$, then $\nabla f(\mathbf{x}) = \mathbf{a}, \nabla^2 f(\mathbf{x}) = \mathbf{0} \in \mathbb{R}^{n^2}$, why???

Example 4 $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$.

Let us consider a general case, suppose that $G : \mathbb{R}^n \to \mathbb{R}$ and $G(\mathbf{z}) = g(z_1) + g(z_2) + \dots + g(z_n)$ and $z_i = \mathbf{a}_i^\top \mathbf{x}$, where $\mathbf{z} = (z_1, \dots, z_n)^\top$. Let us derive that

$$\frac{\partial G(A\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (g(\mathbf{a}_1^\top \mathbf{x}) + g(\mathbf{a}_2^\top \mathbf{x}) + \dots + g(\mathbf{a}_n^\top \mathbf{x}))}{\partial \mathbf{x}}$$
(9)

$$=\sum_{i=1}^{n} \frac{\partial g(\mathbf{a}_{i}^{\top} \mathbf{x})}{\partial \mathbf{x}} = \sum_{i=1}^{n} \frac{\partial g(\mathbf{a}_{i}^{\top} \mathbf{x})}{\partial \mathbf{a}_{i}^{\top} \mathbf{x}} \times \frac{\partial \mathbf{a}_{i}^{\top} \mathbf{x}}{\partial \mathbf{x}}$$
(10)

$$=\sum_{i=1}^{n} \frac{\partial g(\mathbf{a}_{i}^{\top} \mathbf{x})}{\partial \mathbf{a}_{i}^{\top} \mathbf{x}} \mathbf{a}_{i}$$
(11)

$$= A^{\top} \nabla G(\mathbf{z}). \tag{12}$$

Theorem 1 (First-order Optimality Condition) Consider a non-constrained optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^1$. If \mathbf{x}^* is a local minimum, then

$$\nabla f(\mathbf{x}^*) = 0.$$

The points which satisfy the equation $\nabla f(\mathbf{x}) = 0$ are called stationary points.

Theorem 2 (Second-order Optimality Condition) Consider a non-constrained optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^2$. If \mathbf{x}^* is a local minimum, then

$$\nabla f(\mathbf{x}^*) = 0 \ and \ \nabla^2 f(\mathbf{x}^*) \ge 0,$$

where $\nabla^2 f(\mathbf{x}^*) \geq 0$ means the Hessian matrix is a positive semi-definite matrix.

Theorem 3 (Sufficient Condition) Consider a non-constrained optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^2$. If

$$\nabla f(\mathbf{x}^*) = 0 \ and \ \nabla^2 f(\mathbf{x}^*) > 0,$$

where $\nabla^2 f(\mathbf{x}^*) > 0$ means the Hessian matrix is a positive definite matrix. Then \mathbf{x}^* is a local minimum of f.

These proofs can be found at Page 161-163 of the text book.

We go back to this example and further assume that $G(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{b}\|^2 = \frac{1}{2} \sum_{i=1}^n (z_i - b_i)^2$, $z_i = \mathbf{a}_i^\top \mathbf{x}$. Thus, $\nabla G(\mathbf{z}) = (z_1 - b_1, \dots, z_n - b_n)^\top$. Finally, based on Eq.(12),

$$\nabla f(\mathbf{x}) = \frac{\partial G(\mathbf{z})}{\partial \mathbf{x}} = A^{\top} (\mathbf{z} - \mathbf{b})$$
$$= A^{\top} (A\mathbf{b} - \mathbf{b}) = A^{\top} A\mathbf{x} - A\mathbf{b}$$

and

$$\nabla^2 f(\mathbf{x}) = A^\top A.$$

Recall the least squares problem (7), and set $\nabla f(\mathbf{x}) = \nabla_{\frac{1}{2}} \|A\mathbf{x} - \mathbf{b}\|_2^2 = 0$, then we obtain the so-called *normal equation*:

$$A^{\top}A\mathbf{x} - A^{\top}\mathbf{b} = 0. \tag{13}$$

If $A^{\top}A$ is invertible, then $\mathbf{x}^* = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$, which is called a closed form solution.

According to the definition of stationary point, we know that $\mathbf{x}^* = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$ is a stationary point of the least squares problem. Furthermore, if $\nabla^2 f(\mathbf{x}) = A^{\top}A$ is a positive definite matrix (invertible), then $\mathbf{x}^* = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$ is a local minimum according to Theorem 3.

The procedure of obtaining the closed form solution can be seen as an algorithm for solving the linear least squares problem.

References